Effective visible light photodegradation of ortho and para- nitrophenols using BiVO₄

A. M. Umabala

Abstract— T Photocatalytic degradation of ortho- and para nitrophenols was investigated over $BiVO_4$ under visible light irradiation. $BiVO_4$ degraded ortho nitrophenol completely in 210 min. Rate of degradation enhanced in presence of H_2O_2 and complete degradation was achievd in 120min. Unlike ortho nitrophenol, para nitrophenol showed less photolysis and complete degradation of para nitrophenol was achieved for 120min of irradiation in presence of $BiVO_4$ and H_2O_2 .

Index Terms—A2-nitrophenol, 4-nitrophenol, BiVO₄, photocatalytic degradation.

I. INTRODUCTION

Phenols and phenolic compounds are common pollutants of aquatic systems. For instance, nitro phenols are common compounds detected in agricultural waste. Similarly, para nitro phenol used in the synthesis of dyes, pharmaceuticals, pesticides, herbicides and explosives is a common constituent in the effluents from industries involved in manufacturing these chemicals. Besides being carcinogenic and mutagenic, para nitro phenol is toxic even to plants, animals and microorganisms. Though different methods have been employed for the remediation of phenols in terms of solvent adsorption, membrane separation extraction, and chlorination, these methods have some inherent drawbacks as they generate secondary pollution due to phase transfer of pollutants. During the last two decades, attention has been focused on the semiconductor mediated heterogeneous photocatalysis for remediation of nitro phenols using different advanced oxidation processes as discussed in different reviews [1-4].

Giuseppe Marci et al [5] reported degradation of 4-nitro phenol (4-NP) using polycrystalline ZnO/TiO₂ under U.V irradiation for 150min and continuous oxygen bubling. Di Paola et al [6] studied photocatalytic activity of TiO₂ impregnated with various transition metal ions for 4-NP degradation using 150min of U.V. irradiation. Kashif Naeem and Feng Ouyang [7] reported 35% photocatalytic degradation of 4-NP under U.V irradiation for 120min over TiO₂ dispersed on active carbon, ZSM-5, SiO₂ and rice husk. Lixia Yang et al [8] reported degradation of 4-NP over Cu deposited on TiO₂ heterojunction in 250min under solar light. Hasan Ilyas et al [9] reported 80% degradation of 4-NP over Ag-TiO₂ particles under U.V irradiation for 60min. Wan-Jun Sun et al [10] reported 90% degradation of 4-NP under visible light over Cu porphyrin-TiO₂ +H₂O₂. Rahmatollah Rahimi and co workers [11] studied photodegradation of 4-NP over N, S codoped TiO₂ under visible light irradiation for 180min. Hond Ben Ybt Suida and Bassem Jamoussi [12] reported 98%

degradation of 4-NP over TiO₂-Zinc pthallocyanin under solar light and oxygen bubling for 60min. Lu Pan et al [13] reported 90% degradation of 4-NP in 180min over CuCr₂O₄ and H₂O₂ under visible light irradiation. Safa et al [14] reported 98% degradation of 4-NP in 180min over ZnO-nano flowers under U.V irradiation. Shafiqual Islam et al [15] reported 90% degradation of 4-NP in 120min over TiO₂+H₂O₂ under U.V irradiation and observed that addition of Cu²⁺ enhances the percent degradation but excess of Cu²⁺ decreases the degradation. Sugiyama et al [16] reported that the degradation capability of ZnO particles towards 4-NP under solar radiation was superior to U.V light irradiation. Zhigang Xiong and coworkers [17] reported 90 to 100% degradation of 4-NP in 300min over Au and Pt-TiO₂ composites under visible light. Si Zhan Wu and coworkers [18] reported 90% degradation of 4-NP in 360min over graphitic carbon-nitride (g-C₃N₄). Hong Xu GuO et al [19] reported 90% degradation of 4-NP over Zn₃(VO₄)₂ under visible light. Radwa Elsalamony and Dalia Abd El- Hafiza [20] reported degradation of 4-NP in 150min over Cu-TiO₂ under U.V irradiation. Nguyen Quang Long et al [21] reported degradation of 4-NP over Fe₃O₄ -N-doped TiO₂ under visible light with continuous air bubbling. Hyun-Gyu Lee et al [22] reported degradation of 4-NP under visible light using TiO₂-graphene-palladium nanowires. Khadija Eddanani et al [23] reported degradation of 4-NP over $Li_{0.5}M_{0.5}Ti_2(PO_4)_3$ (M=Ni, Co and Mn) + H_2O_2 under visible light. Jing Zhang et al [24] reported 80% degradation of 4-NP in 180min over TiO2-Sn-Porphyrin nanoparticles under visible light irradiation. Suranjan Sikdar, and Coworkers [25] studied degradation of 4-NP over M_xNb_xTi_{1-2x}O_{2+x/2} M=Cr, Fe; X=0.01-0.2) under U.V irradiation. To our knowledge, so far there are no studies reported on photocatalytic degradation of nitro phenols using BiVO₄ although BiVO₄ is reported to be an excellent visible light responding photocatalyst for the degradation of several dyes [26].

In view of the above, the present work is under taken to investigate the degradation of ortho nitrophenol and para nitrophenols using $BiVO_4$ as photocatalyst in presence of an external oxidant H_2O_2 under visible light irradiation without any air/oxygen bubbling.

II. MATERIALS AND METHODS

A. Synthesis

Monoclinic BiVO₄ is synthesized using room temperature solid-state metathesis reported elsewhere [27] from this laboratory. A.R.grade BiCl₃ (Loba) was used as precursor along with Na₃VO₄ (Aldrich). Stoichiometric quantities of reactants in 1:1 molar ratio were weighed and ground thoroughly in an agate mortar for 2hrs in presence of ethanol. The mixture immediately turned to canary yellow in colour. The homogenized mixture was washed with distilled water to

A. M. Umabala, Associate Professor, Dept. of Inorganic & Analytical Chemistry, Andhra University, Visakhapatnam, India-530 003.

remove NaCl by product and dried at room temperature. The dried sample was used for phase identification and catalytic studies.

B. Characterizations

Phase identification of the sample was investigated with X-ray diffractometer (PANalytical- X' Pert PRO, Japan) at room temperature, using Nickel filtered Cu-K α radiation (λ = 1.54059 Å), over a range of 10° $\leq 2\theta \leq 80^{\circ}$ with a scan rate of 2° min⁻¹.

C. Photocatalytic studies

Photo catalytic activity of $BiVO_4$ was evaluated in terms of degradation of ortho and para nitro phenols under visble ight. 10 mg of the catalyst powder was added into 100ml 2-NP/4-NP aqueous solution (10 mg/L). Before irradiation, the above suspension was magnetically stirred for 30 minutes. The suspension was then exposed to 400 W metal halide lamp; 5ml aliquots were pipetted at periodic time intervals. Progress of decolorization was followed by recording the corresponding absorption spectrum. All the experiments were conducted under ambient conditions. Percent degradation of dye was computed using the relation

% degradation =
$$(A_0 - A_t)/A_0 \times 100$$

where A_0 and A_t are respectively initial absorbance and absorbance at time't'

III. RESULTS AND DISCUSSION

BiVO₄ has been reported to exist in three polymorphic modifications namely Tetragonal zircon, Monoclinic scheelite and Tetragonal scheelite. Of these three crystalline modifications, only the monoclinic form of BiVO₄ exhibits visible light induced photocatalytic activity. Fig. 1 depicts X-ray diffraction (XRD) pattern of BiVO₄ sample prepared by solid-state metathesis reaction. All peaks in the XRD pattern could be assigned to monoclinic BiVO₄ of JCPDS File NO 83-1698. Absence of peaks due to any contaminant suggests that the sample obtained is phase pure BiVO₄ of monoclinic structure.

Fig. 1. X-ray diffraction pattern of resultant ground mixture of reactants after washing

In the degradation of dyes with different chromophores, three different approaches were proposed in literature to enhance the photocatalytic quantum efficiency of $BiVO_4$. These are (i) synthesis of phase pure monoclinic $BiVO_4$ crystalline modification (ii) preparing high surface area $BiVO_4$ through high energy facets and (iii) formation of special architecture

composites such as Bi_2O_3 -BiVO₄, Bi_2S_3 -BiVO₄, Fe₂O₃-BiVO₄ etc. Since synthesis of nano BiVO₄ with high surface area or with special architecture is not cost effective and not viable for large scale industrial applications, addition of external oxidant H₂O₂ is taken up in this study to enhance the photocatalytic efficiency of m-BiVO₄ because addition of H₂O₂ has been reported to be beneficial in degradation of several dyes over different photocatalysts [28].

Reports on photocatalytic degradation of ortho nitrophenol (2-NP) are somewhat limited as compared to that of 4-NP. Di Paola et al [29] reported photocatalytic degradation of 2-NP over TiO₂ under U.V irradiation for 240min. Priya and Giridhar [30] reported degradation of 2-NP over TiO₂ under U.V irradiation for 150min. Asha and Sharma [31] reported degradation of 2-NP over Ag-TiO₂ under U.V. irradiation for 360min of irradiation. Jingtao Dai et al [32] reported degradation of 2-NP over TiO₂ nanoparticles synthesized by hydrothermal method using ionic liquids. Aslam et al [33] reported enhanced photocatalytic activity of V2O5-ZnO composites for the mineralization of 2-NP for 150min of irradiation under sun light. Temporal variation of spectral contours for 2-NP, 2-NP+H₂O₂, 2-NP+BiVO₄ and 2-NP+BiVO₄+H₂O₂ as a function of irradiation time are shown in Fig 2.

Fig 2. Temporal variations of spectral contours for (a) 2-NP, (b) 2-NP+H₂O₂, (c) 2-NP+BiVO₄, and (d) 2-NP+BiVO₄+H₂O₂ as a function of irradiation time.

From the spectra it can be seen that 2-NP exhibits two absorption peaks at λ = 275 and 350nm and undergoes slow photodegradation to an extent of ~42% for irradiation of 180min (Fig 2(a)). In presence of H₂O₂, 2-NP shows photodegradation to an extent of ~36% for irradiation of 210min (Fig 2(b)). However, in presence of BiVO₄ the intensities of both peaks become zero indicating complete degradation (Fig 2(c)) for 210min of irradiation. The rate of photodegradation of 2-NP is found to be expedited in presence of H₂O₂ since 100% degradation is achieved in 180 min (Fig 2(d)). Fig. 3 shows variation of spectral intensities of 2-NP as a function of irradiation time for 20, 30 and 50mg of catalyst. From the figure it can be seen that 20mg of BiVO₄ is the optimum amount of catalyst required for complete degradation in 120min.

Fig. 3. Temporal variation of spectral changes of 2-NP with (a) 20mg, (b) 30mg and (c) 50mg of photocatalyst in presence of H_2O_2 as a function of irradiation time

The above data clearly indicates that 2-NP can be successfully degraded over $BiVO_4$ in presence of H_2O_2 . Fig. 4 depicts temporal variation of spectral contours for 4-NP, 4-NP+H₂O₂, 4-NP+BiVO₄ and 4-NP+BiVO₄+H₂O₂ as a function of irradiation time.

Fig 4. Temporal variation of spectral contours for (a) 4-NP, (b) 4-NP + H_2O_2 , (c) 4-NP + $BiVO_4$, and (d) 4-NP + $BiVO_4$ + H_2O_2 as a function of irradiation time.

The spectra in Fig 4 (a) indicates characteristic absorption for 4-NP at 310 along with a shoulder at 400 nm. From the figure

International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 2394-3661, Volume-2, Issue-11, November 2015

it can be seen that both 4-NP and 4-NP+H₂O₂ undergo very less photodegradation with progressive irradiation up to 210min (Fig 4 a and b). In contrast to 2-NP, degradation of 4-NP in presence of only BiVO₄ is not observed (Fig.4(c)). However, in presence of H₂O₂ and BiVO₄, intensities of both peaks decrease to zero indicating near complete degradation of 4-NP for 150min of irradiation (Fig 4(d)). Fig. 5 depicts variation of spectral intensities as a function of irradiation time for 4-NP with 20, 30 and 50mg of photocatalyst keeping the concentrations of 4-NP as well as H₂O₂ unchanged.

Fig. 5. Temporal variation of spectral changes of 4-NP for (a) 20mg, (b) 30mg and (c) 50mg of photocatalyst in presence of H_2O_2 as a function of irradiation time

From the figure it can be seen that 30mg of BiVO₄ is the optimum amount of catalyst required for irradiation of 120min. Based on the experimental data, the photocatalytic degradation mechanism in presence of H₂O₂ can be given as follows.

$$\begin{split} &\text{BiVO}_4 + \text{hv} \rightarrow e^-_{CB} (\text{BiVO}_4) + h^+_{vB} (\text{BiVO}_4) \\ &e^-_{CB} (\text{BiVO}_4) + \text{H}_2\text{O}_2 \rightarrow \text{`OH+}^-\text{OH} \\ &h^+_{vB} (\text{BiVO}_4) + \text{`OH} \rightarrow \text{`OH} \end{split}$$

2-NP/4-NP + 'OH \rightarrow degradation products

The above results show that $BiVO_4$ can be used as a successful photocatalyst for complete degradation of both ortho and para-nitrophenol in the visible region in presence of H_2O_2 without any O_2 or air bubbling.

CONCLUSIONS

Complete photocatalytic degradation of ortho and para nitrophenols was successfully achieved by photocatalysis over $BiVO_4$ in presence of H_2O_2 under visible light irradiation. $BiVO_4$ effected photocatalytic degradation of ortho nitrophenol even in the absence of H_2O_2 and the

degradation rate increased in presence of H_2O_2 . BiVO₄ degraded para nitrophenol completely only in presence of H_2O_2 .

REFERENCES

- S. B. Dhananjay, G. P. Vishwas, B. Anthony ACM, (2001) Photocatalytic degradation for environmental applications-a Review. J. Chem. Technol. Biotechnol. 77, 102-116.
- [2] K. D. Omatoyo, H. Y. Daniel, A. T. Maya, (2007) Removing pharmaceuticals and endocrine-disrupting compounds from waste water by photocatalysis. J. Chem. Technol. Biotechnol. 82, 121-134.
- [3] B. Guido, B. Silvia, R. Carlo, A. Laura, (2008) Technologies for the removal of phenol from fluid streams: A short review of recent developments. J. Hazard. Mater. 160, 265-288.
- [4] S. Ahmed, M. G. Rasul, W. N. Martens, R. Brown, M. A. Hashib, (2011) Advances in Heterogeneous Photocatalytic Degradation of Phenols and Dyes in Wastewater: A Review. Water Air Soil Pollut. 215, 3–29.
- [5] M. Giuseppe, A. Vincenzo, M. J. Lopez-Munoz, C. Martin, P. Leonardo, R. Vicente, S. Mario, R. J. D. Tilley, A. M. Venezia, (2001) Preparation Characterization and Photocatalytic Activity of Polycrystalline ZnO/TiO₂ Systems. 2. Surface, Bulk 4-Nitrophenol and Photodegradation Characterization. in Liquid-Solid Regime. J. Phys. Chem. B. 105, 1033-1040.
- [6] A. Di Paola, G. Marcı, L. Palmisano, M. Schiavello, K. Uosaki, S. Ikeda, B. Ohtani, (2002) Preparation of Polycrystalline TiO₂ Photocatalysts Impregnated with Various Transition Metal Ions: Characterization and Photocatalytic Activity for the Degradation of 4-Nitrophenol. J. Phys. Chem. B. 106, 637-645.
- [7]. N. Kashif, O. Feng, (2009) Effect of Various Additives on Photocatalytic Degradation of 4- Nitrophenol. E-Journal of Chemistry, 6(S1), S422-S428.
- [8] L. Yang, S. Lian Luo, Yueli, Y. Xiao, Q. Kang, Q. Yun Cai, (2010) High Efficient Photocatalytic Degradation of p-Nitrophenol on a Unique Cu₂O/TiO₂ p-n Heterojunction Network Catalyst. Environ. Sci. Technol. 44, 7641–7646.
- [9] H. Ilyas, I. A. qazi, W. Asgar, M. Ali Awan, K. Zahir-ud-din, (2011) Photocatalytic degradation of nitro and chloro phenols using doped and undoped titanium dioxide nano particles, J. Nanomaterials. doi:10.1155/2011/589185.
- [10] S. Wan-jun, J. Li, Y. Gui-ping, M. Jiang, Z. Feng-xing, (2011) Efficient photo-degradation of 4-nitrophenol by using new CuPp-TiO₂ photocatalyst under visible light irradiation. Catal. Commun. 16, 90–93.
- [11] R. Rahimi. S. S. Moghaddam, M. Rabbani, (2012) Comparison of photocatalysis degradation of 4-nitrophenol using N,S co-doped TiO₂ nanoparticles synthesized by two different Routes. J Sol-Gel Sci. Technol. 64, 17–26.
- [12] H. B. Yahia Smida, B. Jamoussi, (2012) Degradation of Nitroaromatic Pollutant by Titanium dioxide/Zinc Phthalocyanine: Study of the Influencing Factors, IOSR J. Appl. Chem. 2 (3), 11-17.
- [13] L. Pan, L. Li, X. Bao, Y. Chen, (2012) Highly photocatalytic activity for p-nitrophenol degradation with spinel-structured CuCr₂O₄. Micro & Nano Lett. 7 (5), 415–418.
- [14] S. Safa, R. Azimirad, R. Hejazi, M. Rabbani, (2014) ZnO Hierarchical Nanostructures as a Powerful Photocatalyst for the Degradation of P-Nitrophenol, Chinese J. Phys. 52 (5), 1612-1624.
- [15] S. Islam, B. Sumon Kumar, Md. Nadim, K. Hossain, A. Habib, T. S. Akhter Islam, (2014) Photocatalytic Degradation of *p*-Nitrophenol (4-NP) in Aqueous Suspension of TiO₂, American J. Anal. Chem. 5, 483-489.
- [16] M. Sugiyama, Z. Salehi, M. Tokumura, Y. Kawase, (2012) Photocatalytic degradation of pnitrophenol by zinc oxide particles. Water science and technology : a J. Inter. Assoc. Water Pollu. Res. 65(10), 18826.
- [17] Z. Xiong, L. Zhang, X. Song Zhao, (2014) One Step Synthesis of Metal@Titania Core–Shell Materials for VisibleLight Photocatalysis and Catalytic Reduction Reaction. Chem. Europ. J. 20(45), 14715–14720.
- [18] S. Z. Wu, C. H. Chen, W. D. Zhang, (2014) Etching graphitic carbon nitride by acid for enhanced photocatalytic activity toward degradation of 4-nitrophenol, Chinese Chem. Lett. 25, 1247–1251.
- [19] H. Guo, D. Guo, Z. Zheng, W. Wen, J. Chen, (2014) Hydrothermal synthesis and visible light photocatalytic activities of Zn₃(VO₄)₂ nanorods. J. Mater. Res. 29(24). 2934-2941.

- [20] R. Elsalamony, D. A. El-Hafiza, (2014) Influence of Preparation Method on Copper Loaded Titania Nanoparticles: Textural, Structural Properties and Its Photocatalytic Activity towards P-Nitrophenol. Chemis. Mater. Res. 6 (4), 122-134.
- [21] N. Q. Long, N. T. Thao Uyen, D. T. Hoang, D. B. Trung, (2015) Preparation, characterization and photo catalytic activity under visible light of magnetic N-dopped TiO₂, Inter. J. Renewable Energy Environ. Eng. 03(01).
- [22] H. G. Lee, S. A. Gopalan, K. Shanmugasundaram, A. I. Gopalan, S. W. Kang, K. P. Lee, (2015) Efficient visible light driven photocatalytic degradation of nitrophenol by using grapheneen capsulated TiO₂ nanowires, J. Hazard. Mater. 283, 400–409.
- [23] K. Eddahaoui, G. Mele, S. Benmokhta, I. Pio, A. Scarlino, (2015) Photodegradation of 4-Nitrophenol in Aqueous Suspension by using new Titanium Phosphates Li0.50M0.25Ti₂(PO₄)₃ (M= Ni, Mn, and Co) Catalyzed Processes, Inter. J. Adv. Res. Chem. Sci. 2(3), 21-32.
- [24] J. Zhang, L. Zhang, X. Li, S. Z. Kang, J. Mu, (2011) Visible Light Photocatalytic Activity of Porphyrin Tin(IV) Sensitized TiO₂ Nanoparticles for the Degradation of 4-Nitrophenol and Methyl Orange, J. Dispersion Sci. Technol. 32, 943–947.
- [25] S. Sikdar, S. Pathak, T. K Ghorai, (2015) Aqueous phase photodegradation of Rhodamine B and p-nitrophenol destruction using titania based nanocomposites. Adv. Mater. Lett. DOI: 10.5185/amlett.2015.5858.
- [26] L. XUE, Y. LILI, Y. LINA, L. HONGJI, Y. YONGSHENG, L. CHUNBO, Z. HONGJU, (2014) VISIBLE LIGHT PHOTOCATALYTIC ACTIVITY OF BIVO₄ particles with different morphologies. Solid state Sci. 32, 61-66.
- [27] U. Sujana Kumari, P. Suresh, A. V. Prasada Rao, (2014) Room temperature solid state metathesis synthesis of photocatalytically active monoclinic $BiVO_4$ and tetragonal $LaVO_4$, J. of Applic. Chem. 3(1), 366-371.
- [28] A. V. Prasada Rao, A. M. Umabala, P. Suresh, (2015) Non TiO₂ based photocatalysts for remediation of hazardous organic pollutants under green technology-Present Status: A Review. J. Applic. Chem. 4, 1145-1172.
- [29] A. Di Paola, V. Augugliaro, L. Palmisano, G. Pantaleo, E. Savinov, (2003) Hetrogeneous photocatalytic degradation of nitrophenols. J. Photochem. Photobiol A:Chem. 155, 207-214.
- [30] M. H. Priya, G. Madras, (2006) photocatalytic degradation of nitrbenzenes with combustion synthesized nano-TiO₂. J. Photochem. Photobiol A:Chem. 178, 1-7.
- [31] Asha, P.N. Sharma, (2013) Photocatalytic Degradation of o-nitrophenol using silver impregnated TiO₂.
 , Inter. J. Environ. Eng. Manag. 4(4), 359-368.
- [32] J. Dai, R. He, Y. Yuan, W. Wang, D. Fang, (2013) TiO₂ nanoparticles: low temperature hydrothermal synthesis in ionic liquids / water and the photocatalytic degradation for *o*-nitrophenol. DOI: 10.1080/09593330.2013.822522.
- [33] M. Aslam, I. M. I. Ismail, T. Almeelbi, N. Salah, S. Chandrasekaran, A. Hameed, (2014) Enhanced photocatalytic activity of V₂O₅-ZnO composites for the mineralization of nitrophenols, Chemosphere, 17, 115-123.

A. M. Umabala, Associate Professor, Dept. of Inorganic & Analytical Chemistry, Andhra University, Visakhapatnam, India-530 003.